

04/06/15

Technical Report for

K.P. Kauffman Company, Inc.

Wattenberg Tank

Accutest Job Number: D69171

Sampling Date: 03/30/15

Report to:

K.P. Kauffman Company, Inc. 1675 Broadway Suite 2800 Denver, CO 80202-4628 slaramesa@kpk.com; mhattel@msn.com

ATTN: Susana Lara-Mesa

Total number of pages in report: 28

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable.

Scott Heideman Laboratory Director

Seed will

Client Service contact: Renea Jackson 303-425-6021

Certifications: CO (CO00049), ID, NE (CO00049), ND (R-027), NJ (CO 0007), OK (D9942), UT (NELAP CO00049), LA (LA150028), TX (T104704511), WY

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	6
Section 4: Sample Results	7
4.1: D69171-1: TANK-I	8
4.2: D69171-1F: TANK-I	9
Section 5: Misc. Forms	10
5.1: Chain of Custody	11
·	12
6.1: Prep QC MP15576: Ca,Mg,K,Na	13
Section 7: General Chemistry - QC Data Summaries	
7.1: Method Blank and Spike Results Summary	
7.2: Blank Spike Duplicate Results Summary	
7.3: Duplicate Results Summary	
7.4: Matrix Spike Results Summary	
7.5: Matrix Spike Duplicate Results Summary	

Sample Summary

K.P. Kauffman Company, Inc.

Wattenberg Tank

Job No:

D69171

Sample	Collected			Matr	ix	Client	
Number	Date	Time By	Received	Code	Туре	Sample ID	
D69171-1	03/30/15	10:30 MH	03/30/15	AQ	Water	TANK-I	
D69171-1F	03/30/15	10:30 MH	03/30/15	AQ	Water Filtered	TANK-I	

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: K.P. Kauffman Company, Inc. Job No

D69171

Site:

Wattenberg Tank

Report Date

4/6/2015 12:03:43 PM

On 03/30/2015, 1 sample(s), 0 Trip Blank(s), and 0 Field Blank(s) were received at Accutest Mountain States (AMS) at a temperature of 3.4 °C. The samples were intact and properly preserved, unless noted below. An AMS Job Number of D69171 was assigned to the project. The lab sample ID, client sample ID, and date of sample collection are detailed in the report's Results Summary.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Metals By Method SW846 6010C

Matrix: AQ

Batch ID: MP15576

- All samples were digested and analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D69098-1FMS, D69098-1FMSD, D69098-1FSDL were used as the QC samples for the metals analysis.
- The serial dilution RPD(s) for Potassium are outside control limits for sample MP15576-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).
- MP15576-SD1 for Calcium: Serial dilution indicates possible matrix interference.

Wet Chemistry By Method ASTM D287

Matrix: ALL

Batch ID:

GN29316

The data for ASTM D287 meets quality control requirements.

Wet Chemistry By Method EPA 1664A

Matrix: AQ

Batch ID: GP14951

- All samples were prepared and analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D69022-1MS were used as the QC samples for the HEM Oil and Grease analysis.

Wet Chemistry By Method EPA 300.0/SW846 9056

Matrix: AQ

Batch ID: GP14954

- All samples were prepared and analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D69186-3BMS, D69186-3BMSD were used as the QC samples for the Chloride, Nitrogen, Nitrate, Nitrogen, Nitrite, Sulfate analysis.
- D69171-1 for Nitrogen, Nitrate: Elevated detection limit due to matrix interference.
- D69171-1 for Sulfate: Elevated detection limit due to matrix interference.
- D69171-1 for Nitrogen, Nitrite: Elevated detection limit due to matrix interference.

N

Wet Chemistry By Method SM 2540C-2011

Matrix: AQ

Batch ID:

GN29294

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D69024-1DUP were used as the QC samples for the Solids, Total Dissolved analysis.

Wet Chemistry By Method SM 5310B-2011

Matrix: AO

Batch ID: GP14986

- All samples were prepared and analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) D69277-3DUP, D69277-3MS, D69277-3MSD were used as the QC samples for the Total Organic Carbon analysis.

Wet Chemistry By Method SM4500HB+-2011/9040C

Matrix: AQ

Batch ID: GN29312

The following samples were run outside of holding time for method SM4500HB+-2011/9040C: D69171-1 Analysis performed past the required 15 minutes from collection time/holding time.

AMS certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting AMS's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

AMS is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. This report is authorized by AMS indicated via signature on the report cover.

Summary of Hits Job Number: D69171

Account:

K.P. Kauffman Company, Inc. Wattenberg Tank 03/30/15

Project: Collected:

Lab Sample ID Client Sample II Analyte	O Result/ Qual	RL ME	L Units	Method
D69171-1 TANK-I				
Chloride	10900	500	mg/l	EPA 300.0/SW846 9056
HEM Oil and Grease	625	4.9	mg/l	EPA 1664A
Solids, Total Dissolved	17800	10	mg/l	SM 2540C-2011
Specific Gravity by Hydrometer	1.0114			ASTM D287
Total Organic Carbon	112	20	mg/l	SM 5310B-2011
pH a	6.99		su	SM4500HB+-2011/9040C
D69171-1F TANK-I				
Calcium	216000	20000	ug/l	SW846 6010C
Magnesium	30400	10000	ug/l	SW846 6010C
Potassium	95500	50000	ug/l	SW846 6010C
Sodium	6470000	20000	ug/l	SW846 6010C

⁽a) Analysis performed past the required 15 minutes from collection time/holding time.

Sample Res	sults	
Report of A	nalysis	

Client Sample ID: TANK-I Lab Sample ID:

D69171-1 AQ - Water

Date Sampled: Date Received: 03/30/15

03/30/15

Percent Solids: n/a

Project:

Matrix:

Wattenberg Tank

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	Ву	Method
Chloride	10900	500	mg/l	1000	03/31/15 11:50	AS	EPA 300.0/SW846 9056
HEM Oil and Grease	625	4.9	mg/l	1	04/01/15	SWT	EPA 1664A
Nitrogen, Nitrate a	< 5.0	5.0	mg/l	500	03/31/15 10:24	AS	EPA 300.0/SW846 9056
Nitrogen, Nitrite a	< 4.0	4.0	mg/l	1000	03/31/15 11:50	AS	EPA 300.0/SW846 9056
Solids, Total Dissolved	17800	10	mg/l	1	03/31/15	AK	SM 2540C-2011
Specific Gravity by Hydrom	ete 1.0114		J	1	04/01/15	TJ	ASTM D287
Sulfate ^a	< 250	250	mg/l	500	03/31/15 10:24	AS	EPA 300.0/SW846 9056
Total Organic Carbon	112	20	mg/l	20	04/03/15 14:50	AK	SM 5310B-2011
pH ^b	6.99		su	1	04/01/15 08:20	TB	SM4500HB+-2011/9040C

(a) Elevated detection limit due to matrix interference.

(b) Analysis performed past the required 15 minutes from collection time/holding time.

Client Sample ID: TANK-I

Lab Sample ID:

D69171-1F AQ - Water Filtered Date Sampled: Date Received:

03/30/15 03/30/15

Percent Solids: n/a

Project:

Matrix:

Wattenberg Tank

Dissolved Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Calcium Magnesium Potassium Sodium	216000 30400 95500 6470000	20000 10000 50000 20000	ug/l ug/l ug/l ug/l	5 5 5 5	03/31/15 03/31/15	04/01/15 KV 04/01/15 KV 04/01/15 KV 04/01/15 KV	SW846 6010C ¹ SW846 6010C ¹ SW846 6010C ¹ SW846 6010C ¹	SW846 3010A ² SW846 3010A ² SW846 3010A ² SW846 3010A ²

(1) Instrument QC Batch: MA5952

(2) Prep QC Batch: MP15576

Misc. Forms	
Custody Documents and Other Forms	
Includes the following where applicable:	

• Chain of Custody

CHA	IN	OF	CUSTOD	V
$\mathbf{L} \mathbf{\Pi} A$		V.F	CUSION	Т

WW.	ACCUTES	many management					1036 You 13-425-6							80033 FED	-EX Tra	cking #					Bottle (Order Co	entro!#		
Spinote .	Laborator													Acc	utes: Qu	uale #					Accules	si Job #	$\overline{\mathbb{Q}}$	69	17
	Client / Reporting Information				Proje	ect Infor	mation	- 1					_	+				-		Requ	ested A	Analysi	ia		Watrix Codes
Company h	âma			Project N	amo:	WATT	ENBE	RG	TAN	ĸ											T				DW- Drinking Weter
	K.P. Kauffman Company, Inc.			Street											-										GW- Ground Water
Address	Broadway, Suite 2800			aireet										1	և	ī									WW- Water
City	State		Zip	City					State					-	H		- 1	8							SW- Surface Water SO- Soil
Denve	er CO	80202-46	28	Fort L	upton				С	0				i .		ω l		Ž						1	StShidge
Project Co	ntact:	SLaraMesa		Project #											i i	3 문		Σg	₹	i		1		- 1	OI-Oğ
D)	Susana Lara-Mesa	2 Palainie 3 f	ILICERDA, COIT	Fax#										<u>نا</u> ا	בו ב	3	- 1	×	\$	ļ	1				LIQ- Other Liquid
Phone #	303-825-4822			Fax #										2	2 15	핑		Ca,	GRAVITY	ļ					AIR- Air
Samplers's		3-665-1400)		Client Pu	rchase Order	#							759	1 20 20 20 20 20 20 20 20 20 20 20 20 20	2 2	凹		S		İ					
Accutest	1	SUMMA#		Collect	ion			Nun	nber	of pr	réser	ved 8		3 6	N N	[]		O	품						SOL-Other Solid WP-Wipe
Sample #		MEOH Vial #	Date	Time	Sampled by	Matrix	# of	ş	$\overline{}$		1 m	7 7		ENCORE	ANIC	ANIONS (NITRATE, NITRITE, SULFATE, CHLORIDE) PH	Ŧ	CATIONS (Ca, K, Mg, NA)	SPECIFIC	TDS	100				LAB USE ONLY
	TANK - I		3 30	1030	MDH	LIQ	7	x		7,	x					х	х	х	х	х				3	
			21.14.11.	107					T	T		П	T							-		ļ	\Box		1
			· · · · · ·	-	İ			\Box	\top	\top	\top	П	\top	+	_	_	_		-		+-	<u> </u>	+		1
				 	 			Н	-	+	+	Н	+	+	-						-		+		+-(4
							 			+	-	H	+	+	+	-				-	+-	-	\vdash		+4
					ļ			Ш		\perp	\perp									<u></u>					<u>/</u>
											Т			T	T						1				
			 	 	1			П	1	\top	+	T	T	+							T^-				
					<u> </u>		 	-	+	+	+	\vdash	+						-		+	-	+	-	
<u> </u>				-		-	ļ			+	4-	-	_						<u> </u>				┼		-
										\perp															
	Turnaround Time (Business days)						eliverable	Infor				_									Commen	ts / Ren	narks		
X_	Std. 10 Business Days	Approved By	y:/ Date:			nercial "/ nercial "i		늬	FULL		e atego	n. A													
	- 1			_		duced		님			atego				-										
 	╡			_	NJ FL			Ħ	State		-	,													
==	1			_	X Hard			x	PDF																
	j			_											Р	DF co	py to	Mik	e Hat	ttel v	ith AF	'EX a	it mha	ttel@m	sn.com
				_	H-4																				
Eme	rgency T/A data available VIA L	abilnk Custody must b	a documer	start helos	y each time	samplas	change	nge	gagel	on I	Inches	lina c	ourle	r deliv		DF CO	py to	Sus	an L	ara-N	riesa v	vith K	CPK at	Slaram	nesa@kpk.com
Relingu	shed by Sampler:	Custody midst D	Onte Time:	,	Received		1 ~	~ /	3/1	7/19	plinqu	shed E	×. ^			102	te Time	»:			Receiv	ad By:			
1	millely		3/20/	15 /141			-	<i>⊃</i> / <u></u>	74	1 3		.4	U								2				
Relinqu	shed by:		Date Time:		Received By	r				R	telinqu	shed E	y:			Di	te Time) :			Receive	aa By:			
3	shed by:		Date Time:		Received By	<i>i</i> :				4	ustod	Soal	a ·		Pı	reserved	Wildre a	pplicat	ile .		4		On Ic	e Cor	oler femp. 2
I nomiqu			1							- 1		3-	V	1			CCI						157		~ U

D69171: Chain of Custody Page 1 of 1

Metal:	c Ai	nalv	reis
TATCIAL.	ובת כ	iai y	212

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: D69171 Account: KPKCOD - K.P. Kauffman Company, Inc. Project: Wattenberg Tank

QC Batch ID: MP15576 Matrix Type: AQUEOUS

Methods: SW846 6010C Units: ug/l

Prep Date:

03/31/15

rrep Date.					03/31/13	
Metal	RL	IDL	MDL	MB raw	final	
Aluminum	100	8.6	41		Mary Control of the C	
Antimony	30	3.2	19			
Arsenic	25	5.2	5.6			
Barium	10	1.4	1.4			
Beryllium	10	.8	1.2			
Boron	50	6.7	6.6			
Cadmium	10	. 4	.36			
Calcium	400	2.2	41	31.8	<400	
Chromium	10	. 4	. 4			
Cobalt	5.0	. 4	.57			
Copper	10	1.2	1.9			
Iron	70	2.2	9.5			
Lead	50	3.6	21			
Lithium	5.0	1.9	2.7			
Magnesium	200	14	19	3.9	<200	
Manganese	5.0	.01	.46			
Molybdenum	10	.8	.84			
Nickel	30	.9	.87			
Phosphorus	100	15	20			
Potassium	1000	130	270	10.0	<1000	
Selenium	50	8.8	11			
Silicon	50	5.2	5.2			
Silver	30	. 4	.6			
Sodium	400	4.9	170	12.1	<400	
Strontium	5.0	.01	.12			
Thallium	10	2.9	4			
Tin	50	13	16			
Titanium	10	.15	2.1			
Uranium	50	3.7	5.5			
Vanadium	10	. 4	. 4			
Zinc	30	.6	3.2			

Associated samples MP15576: D69171-1F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: D69171
Account: KPKCOD - K.P. Kauffman Company, Inc.
Project: Wattenberg Tank

QC Batch ID: MP15576 Matrix Type: AQUEOUS

Methods: SW846 6010C Units: ug/l

Prep Date:

03/31/15

(anr) Analyte not requested

Login Number: D69171
Account: KPKCOD - K.P. Kauffman Company, Inc.
Project: Wattenberg Tank

QC Batch ID: MP15576 Matrix Type: AQUEOUS Methods: SW846 6010C Units: ug/l

Prep Date:

03/31/15

Metal	D69098- Origina		Spikelot ICPALL2		QC Limits
Aluminum					
Antimony					
Arsenic					
Barium	anr				
Beryllium					
Boron					
Cadmium					
Calcium	1400	28600	25000	108.8	75-125
Chromium					
Cobalt					
Copper					
Iron					
Lead					
Lithium					
Magnesium	737	27500	25000	107.1	75-125
Manganese					
Molybdenum					
Nickel					
Phosphorus					
Potassium	229	26000	25000	103.1	75-125
Selenium					
Silicon					
Silver					
Sodium	245	25900	25000	102.6	75-125
Strontium					
Thallium					
Tin					
Titanium					
Uranium					
Vanadium					
Zinc					
Associated s	amples MP	15576: D69	9171-1F		

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

Login Number: D69171 Account: KPKCOD - K.P. Kauffman Company, Inc. Project: Wattenberg Tank

QC Batch ID: MP15576 Matrix Type: AQUEOUS

Methods: SW846 6010C Units: ug/l

Prep Date:

03/31/15

	D69098-1F	Spikelot	QC	
Metal	Original MS	ICPALL2 % Rec	Limits	

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

Login Number: D69171 Account: KPKCOD - K.P. Kauffman Company, Inc. Project: Wattenberg Tank

QC Batch ID: MP15576

Methods: SW846 6010C Units: ug/l

Matrix Type: AQUEOUS

Prep Date:					03/31/15	5
Metal	D69098- Origina		Spikelo ICPALL2	t % Rec	MSD RPD	QC Limit
Aluminum						
Antimony						
Arsenic						
Barium	anr					
Beryllium						
Boron						
Cadmium						
Calcium	1400	28600	25000	108.8	0.0	20
Chromium						
Cobalt						
Copper						
Iron						
Lead						
Lithium						
Magnesium	737	27500	25000	107.1	0.0	20
Manganese						
Molybdenum						
Nickel						
Phosphorus						
Potassium	229	26000	25000	103.1	0.0	20
Selenium						
Silicon						
Silver						
Sodium	245	25700	25000	101.8	0.8	20
Strontium						
Thallium						
Tin						
Titanium						
Uranium						
Vanadium						
Zinc						
Associated s	amples MP	15576: D69	9171-1F			

 ${\tt Results} \, < \, {\tt IDL} \, \, {\tt are } \, \, {\tt shown} \, \, {\tt as } \, \, {\tt zero} \, \, {\tt for } \, \, {\tt calculation} \, \, {\tt purposes} \, \,$

(*) Outside of QC limits

Login Number: D69171
Account: KPKCOD - K.P. Kauffman Company, Inc.
Project: Wattenberg Tank

QC Batch ID: MP15576 Matrix Type: AQUEOUS

Methods: SW846 6010C Units: ug/l

Prep Date:

03/31/15

	D69098-1F	Spikelot	MSD	QC	
Metal	Original MSD	ICPALL2 % Rec	RPD	Limit	

(N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: D69171
Account: KPKCOD - K.P. Kauffman Company, Inc.
Project: Wattenberg Tank

QC Batch ID: MP15576 Matrix Type: AQUEOUS Methods: SW846 6010C

Units: ug/l

Prep Date:

03/31/15

Metal	BSP Result	Spikelot ICPALL2	% Rec	QC Limits
Aluminum				
Antimony				
Arsenic				
Barium	anr			
Beryllium				
Boron				
Cadmium				
Calcium	27500	25000	110.0	80-120
Chromium				
Cobalt				
Copper				
Iron				
Lead				
Lithium				
Magnesium	26900	25000	107.6	80-120
Manganese				
Molybdenum				
Nickel				
Phosphorus				
Potassium	25700	25000	102.8	80-120
Selenium				
Silicon				
Silver				
Sodium	25500	25000	102.0	80-120
Strontium				
Thallium				
Tin				
Titanium				
Uranium				
Vanadium				
Zinc				

Associated samples MP15576: D69171-1F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: D69171 Account: KPKCOD - K.P. Kauffman Company, Inc. Project: Wattenberg Tank

QC Batch ID: MP15576 Matrix Type: AQUEOUS

(anr) Analyte not requested

Methods: SW846 6010C Units: ug/l

Prep Date:

03/31/15

SERIAL DILUTION RESULTS SUMMARY

Login Number: D69171
Account: KPKCOD - K.P. Kauffman Company, Inc.
Project: Wattenberg Tank

QC Batch ID: MP15576 Matrix Type: AQUEOUS Methods: SW846 6010C

Units: ug/l

Prep Date:

03/31/15

		%DIF	QC Limits
anr			
1400	1590	13.6*(a)	0-10
737	770	4.5	0-10
229	0.00	100.0(b)	0-10
245	237	3.6	0-10
	Origina. anr 1400	anr 1400 1590 737 770	Original SDL 1:5 %DIF anr 1400 1590 13.6*(a) 737 770 4.5 229 0.00 100.0(b)

Associated samples MP15576: D69171-1F

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

SERIAL DILUTION RESULTS SUMMARY

Login Number: D69171
Account: KPKCOD - K.P. Kauffman Company, Inc.
Project: Wattenberg Tank

QC Batch ID: MP15576 Matrix Type: AQUEOUS

Methods: SW846 6010C

Units: ug/l

Prep Date:

03/31/15

(anr) Analyte not requested

(a) Serial dilution indicates possible matrix interference.

(b) Percent difference acceptable due to low initial sample $\,$ concentration (< 50 times IDL).

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D69171 Account: KPKCOD - K.P. Kauffman Company, Inc. Project: Wattenberg Tank

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Chloride	GP14954/GN29308	0.50	0.0	mg/l	5	5.10	102.0	90-110%
Fluoride	GP14954/GN29308	0.10	0.0	mq/l	1	1.02	102.0	90-110%
HEM Oil and Grease	GP14951/GN29301	5.0	0.0	mg/l	40	36.3	90.8	78-114%
Nitrogen, Nitrate	GP14954/GN29308	0.010	0.0	mq/l	0.1	0.102	102.0	90-110%
Nitrogen, Nitrite	GP14954/GN29308	0.0040	0.0	mq/l	0.05	0.0507	101.4	90-110%
Solids, Total Dissolved	GN29294	10	0.0	mg/l	400	403	100.8	90-110%
Sulfate	GP14954/GN29308	0.50	0.0	mq/l	5	5.16	103.2	90-110%
Total Organic Carbon	GP14986/GN29362	1.0	0.0	mq/l	5	5.03	100.6	90-110%
рН	GN29312			su	8.00	7.98	99.6	99.1-10

Associated Samples:
Batch GN29294: D69171-1
Batch GN29312: D69171-1
Batch GP14951: D69171-1
Batch GP14954: D69171-1
Batch GP14986: D69171-1
(*) Outside of QC limits

BLANK SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D69171 Account: KPKCOD - K.P. Kauffman Company, Inc. Project: Wattenberg Tank

Analyte	Batch ID	Units	Spike Amount	BSD Result	RPD	QC Limit	** The skin
HEM Oil and Grease	GP14951/GN29301	mg/l	40	35.9	1.1	20%	

Associated Samples: Batch GP14951: D69171-1 (*) Outside of QC limits

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D69171 Account: KPKCOD - K.P. Kauffman Company, Inc. Project: Wattenberg Tank

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Solids, Total Dissolved	GN29294	D69024-1	mg/l	1830	1850	1.1	0-20%
Total Organic Carbon	GP14986/GN29362	D69277-3	mg/1	1.5	1.5	0.0	0-20%

Associated Samples: Batch GN29294: D69171-1 Batch GP14986: D69171-1 (*) Outside of QC limits

7.4

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D69171 Account: KPKCOD - K.P. Kauffman Company, Inc. Project: Wattenberg Tank

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Chloride	GP14954/GN29308	D69186-3B	mg/l	130	50	184	108.0	80-120%
Fluoride	GP14954/GN29308	D69186-3B	mq/l	0.0	10	10.2	102.0	80-120%
Fluoride	GP14954/GN29308	D69186-3B	mg/l	0.11	10	10.2	102.0	80-120%
HEM Oil and Grease	GP14951/GN29301	D69022-1	mq/l	10.2	40	45.1	87.3	78-114%
Nitrogen, Nitrate	GP14954/GN29308	D69186-3B	mg/l	0.27	1	1.4	113.0	80-120%
Nitrogen, Nitrate	GP14954/GN29308	D69186-3B	mg/l	0.24	1	1.4	113.0	80-120%
Nitrogen, Nitrite	GP14954/GN29308	D69186-3B	mg/l	0.015	0.5	0.49	98.0	80-120%
Nitrogen, Nitrite	GP14954/GN29308	D69186-3B	mg/l	0.0	0.5	0.49	98.0	80-120%
Sulfate	GP14954/GN29308	D69186-3B	mq/l	239	50	293	108.0	80-1209
Total Organic Carbon	GP14986/GN29362	D69277-3	mg/l	1.5	10	11.4	99.0	80-1209

Associated Samples: Batch GP14951: D69171-1 Batch GP14954: D69171-1 Batch GP14986: D69171-1

Batch GP14986: D69171-1 (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits

MATRIX SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D69171
Account: KPKCOD - K.P. Kauffman Company, Inc.
Project: Wattenberg Tank

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MSD Result	RPD	QC Limit
Chloride	GP14954/GN29308	D69186-3B	mg/l	130	50	182	1.1	20%
Fluoride	GP14954/GN29308	D69186-3B	mg/l	0.0	10	9.9	3.0	20%
Fluoride	GP14954/GN29308	D69186-3B	mg/l	0.11	10	9.9	3.0	20%
Nitrogen, Nitrate	GP14954/GN29308	D69186-3B	mg/l	0.24	1	1.3	7.4	20%
Nitrogen, Nitrate	GP14954/GN29308	D69186-3B	mg/l	0.27	1	1.3	7.4	20%
Nitrogen, Nitrite	GP14954/GN29308	D69186-3B	mg/l	0.015	0.5	0.49	0.0	20%
Nitrogen, Nitrite	GP14954/GN29308	D69186-3B	mg/l	0.0	0.5	0.49	0.0	20%
Sulfate	GP14954/GN29308	D69186-3B	mg/l	239	50	290	1.0	20%
Total Organic Carbon	GP14986/GN29362	D69277-3	mg/l	1.5	10	11.3	0.9	20%

Associated Samples:
Batch GP14954: D69171-1
Batch GP14986: D69171-1
(*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits